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Abstract

In high-performance processors, the accuracy of branch prediction plays a significant role in enhancing computer execution. A new
hardware approach is presented in this paper to dynamically predict branch directions using path information. As an execution path contains
large information, we compress the large information using a technique based on the linear feedback shift register (LFSR) that is widely used
in testing and error correction coding. A modified version of LFSR, called windowed LFSR, is developed to calculate the signature of a path
in one cycle. Since the windowed LFSR has a very regular structure, it can be easily implemented. For most of the benchmarks, the proposed
prediction scheme shows better prediction accuracy than the pattern-based predictions.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In modern times, processors that issue multiple instruc-
tions and have deep pipelining, reducing branch penalty are
crucial in exploiting maximal performance of processors.
As shown in Fig. 1, the pipeline has to stall for a number
of cycles if a branch instruction is encountered because the
branch is usually resolved at the later pipeline stage. To
reduce the penalty, branch prediction is actively employed
in high-performance processors. As the accuracy of branch
prediction has a great influence on the overall performance,
there have been a variety of efforts taken towards reducing
the misprediction rate even at the expense of additional chip
area.

Starting from a simple prediction scheme in which the
direction of a branch is determined by the previous history
of the branch [1], prediction is advanced to correlation
schemes to enhance the prediction accuracy. The correlating
branch prediction [8,10,11] is based on the fact that the
direction of a branch is closely related to the associated
path, i.e. the sequence of basic blocks executed just before
the branch instruction. The correlation schemes can be clas-
sified into two categories. The first category called pattern-
based correlation uses the directions of preceding branches
to represent the associated path and the second called path-
based correlation directly uses the path information.

Although pattern-based correlation schemes are prevalent

due to their prediction accuracy and relatively simple hard-
ware, they often make wrong decisions that could be
correctly predicted if path information were provided
[9,12]. A path-based correlation scheme was proposed [9],
but failed to improve the prediction accuracy due to the
inefficiency in the way of representing the path information.

In this paper, we analyse the factors responsible for the
low prediction accuracy in the previous path-based scheme
and propose a new approach to deal with the problems. To
cope with the large information in a path, a compressing
technique is employed in our scheme. The compression is
based on the linear feedback shift register (LFSR) which is
widely used in testing and error correction coding. An
extended LFSR is proposed to compress the path informa-
tion at the rate of one cycle. In most of the benchmarks, the
prediction accuracy of the proposed scheme is equal to or
better than that of the pattern-based predictions.

The remainder of this paper is organized as follows.
Section 2 reviews previous work on the correlation-based
scheme, and Section 3 introduces LFSR and the modifica-
tion. Section 4 presents a new path-based prediction scheme
and its properties. We discuss experimental results in
Section 5 with focusing on the effect of parameters on
performance. Section 6 summarizes our study and
concludes with describing future work.

2. Related works

To enhance the prediction accuracy, Pan et. al. proposed a
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correlation-based branch prediction scheme which is dyna-
mically evaluated in the hardware [10]. Besides the branch
history register that stores the directions of a set of preced-
ing branch instructions, the address of a branch instruction is
also used to select a predictor in the correlation-based
prediction scheme, as shown in Fig. 2. The prediction
table is accessed by the lowerm-bit part of the branch
address and the recentn-bit history of previous branches.
Each entry of the prediction table contains a 2-bit up/down
counter to remember previous directions of the correspond-
ing branch. In general, this pattern-based correlation
scheme, namedgselect[8] or GAs [11], outperforms the
simple schemes that consider only the branch address.

Though the pattern history register is relatively simple, it
is difficult to represent the path information correctly. Due
to the following two observations, the path-based scheme
can give more accurate prediction than the pattern-based
schemes:

1. Two different paths can yield the same pattern. Such a
case is calledpattern aliasing[12],and occurs frequently
in call-return boundaries [9].

2. In compilers, simpleswitch statements are usually

optimized by using indirect jump instructions whose
target addresses are normally stored in a table. This
makes it very difficult to determine the next basic
block by using only the direction information.

As the second observation occurs more often inC11
programs that usually contain more functions and indirect
jumps thanC programs [3], the advantage of the path-based
prediction scheme becomes more prominent with the wider
acceptance of object-oriented programming.

To directly utilise the path information rather than the
pattern history, two methods were proposed. First, the static
correlating prediction scheme proposed by Young [12]
determines the direction of a branch in compile time by
considering the path to the branch. Second, proposed by
Nair, a dynamic path-based scheme implemented in hard-
ware [9]. Its organization is similar to that of the pattern-
based scheme except that, in place of the pattern history,
lower k bits of target addresses of preceding branches are
concatenated as shown in Fig. 3. Thus, only a small portion
of target addresses is collected as path information.
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Fig. 1. In a 2-issue superscalar processor, the pipeline stalls until the target address of a branch instruction is resolved at the execution stage. The branch penalty
is 8 instructions in this case.
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the preceding branches.



When the number of bits extracted from a branch is not
enough to distinguish it from others, prediction accuracy
can be decreased due to the interference among different
paths sharing the same entry of the prediction table. On
the other hand, if the number of bits is too large, many
entries of the prediction table can be allocated for cases
that never occur in practice.

3. Signature analysis

Signature analysis is a compression technique based on
the concept of cyclic redundancy checking and it is usually
realized in hardware using the linear feedback shift register
(LFSR).

3.1. Linear feedback shift register

The LFSR [1], shown in Fig. 4, is a shift register in which
the shifted output is fed back to the register inputs through
XOR gates. Characteristic polynomials denoted as {C1–Cn}
determine the feedback path, whereCi takes either 0 or 1.
The feedback value that comes fromZ is applied to every
stage in whichCi is 1. This means the feedback path is
parameterized byCi. A characteristic polynomial that can
generate 2n 2 1 periodic states is called a primitive poly-
nomial. The primitive polynomial is commonly used to
generate pseudo-random numbers as it can generate all
patterns except the all zero pattern.

For a large number of test patterns, checking the results of
a circuit requires a large sized ROM to store all expected
result values to be compared with actual results. Instead of
checking the result for each test pattern, we can compress
the large number of results into one value called a signature,

and compare it with one reference value calculated by
asserting the test patterns to a simulator. If the compression
yields a quite different signature even for slightly dissimilar
test patterns, we can assume that the final signature stands
for the whole results.

The following properties of the LFSR are worthwhile to
note;

1. The LFSR distributes all possible input bit-streams quite
evenly over all possible signatures.

2. The probability,P(n), that ann-bit signature generator
results in the same value for two different input patterns
approaches 22n.

The properties are obtained by assuming that all possible
patterns are equally distributed. Although the assumption
does not hold good; andP(n) is dependent on the character-
istic polynomial, experimental results show that the primi-
tive polynomials help reduce the probability,P(n).

The signature analysis can be extended for multiple
output circuits. A multi-bit input LFSR that can be used
for this purpose is shown in Fig. 5, where multiple inputs,
{ D1–Dn}, are simultaneously fed to the LFSR.

3.2. Windowed LFSR

The LFSR generates one signature for all inputs asserted.
If such an LFSR is used to compress branch addresses in a
path, it produces the signature using all the preceding
addresses, thus resulting in a different signature for every
branch met in run time. Since the signature identifies an
entry of the prediction table, the same branch encountered
in run time may point to a different location.

In general, the path to a branch instruction is defined by a
fixed number of branch addresses executed before the
branch instruction. Therefore, to utilise the previous history,
we need to generate the same signature for the same path
and calculate one signature per branch instruction by
considering only a fixed number of preceding branch
instructions. This is impossible in the standard LFSR that
is developed for compressing all inputs asserted.

In this paper, we propose a new LFSR called windowed
LFSR. As shown in Fig. 6, the windowed LFSR consists of
several LFSR stages that operate in a pipelined manner. The
first stage compresses only one address, the second stage
compresses two addresses, and finally thelth stage can
compress l addresses. Since all the stages work in a
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pipelined fashion, we can generate the signature of a path
consisting ofl addresses at the rate of one cycle.

4. Branch prediction using path-based correlation

4.1. Path-based correlation

The target address of a branch can be regarded as the start
address of the following basic block. Thus, a sequence of
target addresses is an adequate means to represent a path.

Although target addresses consist of many bits, a relatively
small number of bits are sufficient to index an entry of the
prediction table. Therefore, a good hashing function is
essential for path-based predictions.

The basic structure of our path-based scheme is shown in
Fig. 7. The proposed windowed LFSR makes a signature for
each fixed-length path by using target addresses of preced-
ing control instructions.

Three parameters are defined in Fig. 7 to model the
proposed path-based scheme.

• m: the number of bits in the branch addresses for index-
ing the prediction table

• n: the number of bits in the signature to be used for
indexing the prediction table

• l: (correlation length) the number of stages in the wind-
owed LFSR

We will use the (m, n, l) notation to represent the hard-
ware configuration shown in Fig. 7. In contrast to the
pattern-based scheme in whichn and l have the same
value, they are separated in our scheme. This separation
makes it possible to adjust correlation without changing
the prediction table size and to control the prediction rates.

In the previous path-based scheme two parameters,
number of bits and bit locations, are statically determined
[9]. As only a few bits are considered in the target address of
a preceding branch [7], there is still much information loss.
On the other hand, in windowed LFSR, large parts of target
addresses are considered and there is no limitation in
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increasing the correlation length. Therefore, our path-based
scheme considers more information than the previous
scheme in selecting an entry of the prediction table.

Now, let us consider the area overhead of windowed
LFSR. If we count only storage elements and assume that
the 2-bit up/down counter is used in the prediction table, the
ratio of the area of windowed LFSR to that of the prediction
table can be represented as follows.

size�windowed LFSR�
size�prediction table� �

n × l

2m1n11

If we assume�m; n; l� � �2;14;10�, for example, the area
overhead is only 1%. Moreover, it becomes smaller as the
prediction table size increases.

4.2. Experimental environment

We evaluated our branch scheme with a trace-driven
simulation technique. The benchmarks consisting of eight
SPEC CINT95 programs are tested on an UltraSPARC
workstation using ‘Shade’ simulator [4]. The statistics of
the benchmarks are summarised in Table 1.

Since some of the SPEC benchmark programs that are
marked withp in Table 1 take too long a simulation time to

complete, we need to reduce the size of the trace. As applied
in numerous literature [6], some parameters are modified to
balance the number of branches while preserving the prop-
erties of the benchmarks.

Primitive polynomials [2] are employed as characteristic
polynomials of the windowed LFSR. The 2-bit up/down
counter is adopted for branch prediction, and we take target
addresses of conditional branches as inputs to the windowed
LFSR. Target addresses of indirect jumps and unconditional
branches are excluded to compare fairly with the pattern-
based schemes.

4.3. Characterization

Fig. 8 shows prediction rates with regard to the change of
two parameters,n and l, where the optimal correlation
length for a given prediction table is denoted by a circle.
The optimal correlation length increases as the prediction
table size increases.

As we increase the correlation length to examine longer
paths, the number of table entries occupied by a branch
increases, and prediction accuracy for the branch improves.
However, it also results in greater interference between
different branches for a fixed-sized prediction table. For
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Table 1
Statistics of benchmark programs

CINT95 benchmarks Input Number of dynamic

Branches Indirect jumps Unconditional branches

GO train/2stone9p 27,929,154 2,830,531 5,207,465
M88KSIM train/ctl.in 18,751,361 3,192,401 4,558,039
GCC train/jump.i 27,285,351 3,451,413 4,198,245
COMPRESS ref/bigtest.inp 14,012,016 3,461,676 4,972,375
XLISP train/test.in 24,787,835 7,522,965 10,515,395
IJPEG train/vigo.ppmp 15,627,942 2,149,259 2,692,476
PERL ref/scrabblp 21,388,367 5,151,467 3,590,305
VORTEX train/vortex.inp 19,461,436 2,111,798 2,700,339

64 Bytes

256 Bytes

1 KB

4 KB
16 KB

64 KB

Fig. 8. Misprediction rates for GCC according to various prediction table sizes and correlation lengths. The branch address is not used (m� 0) in this
experiment. The circled point for each prediction table size represents the optimal correlation length, in which the misprediction rate is minimal.



this reason, a long correlation length is inappropriate for a
small-sized prediction table.

In Fig. 9, the change of prediction rate according to the
variation ofmandl is shown for a 16 KB prediction table. A
sequence of target addresses is a perfect representation of a
path in itself, but concatenating the branch address can
improve the prediction rate. By including the branch address
in indexing the prediction table, the interference is limited to
the paths having the same branch. Until 6 bits of the branch
address are used (m # 6), prediction accuracy increases
gradually.

However, as more bits of branch addresses are consid-
ered, there are smaller bits remaining to represent a path.
Thus, intensive interference between paths related to the
same branch decreases the prediction rate. This is shown
in Fig. 9, where the prediction rate degrades asm grows
to greater than 8.

4.4. Interference between signatures

Contrary to the pattern-based scheme, in which the
prediction rate is greatly affected by interference between
different paths that have the same pattern, our path-based
scheme does not have such intrinsic interference. However,
there is another interference that is induced by paths having
the same signature. Two graphs in Fig. 10 show the effects
of interference introduced in the pattern-based scheme and
the proposed path-based scheme, when the branch address is
not considered (m� 0). For different values ofm, the
experiment shows similar results.

As shown in Fig. 10(a), the amount of interference in our
scheme is slightly larger than that of the pattern-based one
for a 1 KB prediction table. However, as the prediction table
size increases, the interference becomes smaller than that of
the pattern-based one as shown in Fig. 10(b). This fact
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Fig. 10. Interference effects of pattern-based and the proposed path-based schemes. As the prediction table size increases, the proposed scheme reduces
interference more rapidly than the pattern-based scheme.



implies that our scheme is more effective in reducing inter-
ference as the prediction table size increases. It is known
that small interference usually leads to better prediction
[12].

4.5. Comparison with other prediction schemes

Our scheme is compared to other prediction algorithms—
gselect, and Nair’s—in Fig. 11. For all schemes, 6 bits are
assigned to the branch address and the remaining bits to
correlation regardless of the prediction table size. In Nair’s
method, 2 bits of a target address are used, so its correlation
length is a half of the others.

If the prediction table size is small, our scheme shows
some improvement in several benchmarks, especially for
XLISP and PERL, but not for the others. As the prediction
table size grows, our scheme catches up and overcomes the
others for all benchmarks. It becomes evident especially
when the prediction table size exceeds 16 KB, which can
be implemented reasonably with the current technology. A
reason for this tendency is that the interference of our

path-based scheme is less than that of pattern-based
schemes for the large-sized prediction table, as mentioned
in Section 4.4. The reduction of interference results in better
prediction accuracy.

We compared our scheme with another widely used
prediction scheme,gshare, where the branch address
and the pattern are mixed by XORing [8]. In our
scheme, the branch address can be fed into the wind-
owed LFSR and mixed with the signature, asgshare
does. In our scheme, since the correlation length is
not dependent on the number of bits assigned to repre-
sent path information, a large number of bits in the
signature can be involved in the XORing. It leads to
reducing the aliasing between signatures and results in
superior prediction accuracy even at the same correla-
tion length, as shown in Fig. 12.

Our scheme outperformsgshare for all benchmark
programs, especially for GO benchmark—known to be hard
for achieving good prediction accuracy. Our misprediction
rate falls more rapidly compared togshareas the prediction
table size grows.
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Fig. 11. Comparisons of misprediction rate betweengselectand Nair’s scheme (the X-axis denotes the prediction table size in KB). The same correlation is
assumed for all schemes; 6 bits from the branch address and the remaining bits from the branch history.



5. Properties related to a path

5.1. Branch address as an input to windowed LFSR

Since a target address points to the leader of a basic block,
it can be used as an input to the windowed LFSR. Consider-
ing the pipelining, however, it is hard to determine the target
address of a branch at the time of updating windowed LFSR,
and thus a special hardware is required to resolve this
problem. Calder et al. suggested an architecture where a
lower part of target address is stored in the instruction
cache [5], but it needs additional logic to detect the case
of exceeding boundary.

var :� 0;
…

if (cond) then
var :� 1;

…
if (var1) then {predict}

At present, most of the commercial processors use Branch
Target Buffers (BTB) [1] to predict target addresses.
Pattern-based schemes also have to predict the branch direc-
tions in order to update the pattern history register, but the
prediction of branch directions is easier and more accurate
than that of target addresses.

To alleviate the difficulty of predicting target addresses,
we can use the branch addresses as inputs to the windowed
LFSR. However, dealing with only branch addresses can
miss the fact that the second branch is dependent on the
assignment following the first branch.

To cope with the problem, the branch direction must be
considered in conjunction with the branch address. We
examine three cases in which the target address, the branch
address or the branch address XORed with the direction is
used as an input to the windowed LFSR. In experimental
results, differences between the three cases are small, but
those that use either the target address or the branch address
with the direction are slightly superior to the one based on
only the branch address.

5.2. Reducing correlation length

In contrast to the pattern-based scheme in which branch
directions are used as a pattern, in the path-based scheme it
is possible to exclude fall-through branches without loss of
prediction accuracy. Treating a sequence of fall-through
basic blocks as one basic block does not destroy path infor-
mation at all. If we assume that the probability of taken
branches is equal to that of fall-through branches, about
half the correlation is enough to ensure the same perfor-
mance.

A problem with this technique is that it is impossible to
determine where the current basic block is. Hence, the
prediction table is indexed together with the current branch
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Fig. 12. Comparisons of misprediction rate betwengshareand our path-
based prediction scheme (the correlation:X-axis denotes the prediction
table size in KB). Each scheme is experimented with the same parameters.

Fig. 13. The performance of the enhanced scheme for 16 KB prediction
table. (0, 16, 20) is applied for thebasic scheme and (0, 16, 12) for the
enhancedscheme.



address and the signature. Although there is no profit in the
number of occupied prediction table entries the correlation
length, corresponding to the number of stages in the wind-
owed LFSR, can be reduced by half without sacrificing
prediction rate. This scheme is calledenhanced.

This enhancedscheme is compared with thebasic
scheme in Fig. 13, where the correlation length of the
enhanced scheme is 12 and that of the basic scheme is 20.
The value of correlation length is determined to give the
best prediction rate for each scheme.

Prediction rates of thebasic scheme and theenhanced
scheme are almost equal to each other, but there are several
cases where theenhancedscheme outperforms thebasic
scheme even with the reduced area.

6. Conclusion

A new approach to dynamic branch prediction using path-
based correlation is presented in this paper. To handle the
large information of a path, the proposed scheme is based on
a compression technique—signature analysis—that is
actively being used in testing and coding. Furthermore,
we have presented a novel circuit called windowed LFSR
to generate the signature of a path in one cycle. The wind-
owed LFSR has a very regular structure and requires negli-
gible hardware resources.

Our path-based scheme separates correlation from the
prediction table size, and gives freedom to improve predic-
tion accuracy. Simulation results for a number of bench-
marks reveal that the proposed scheme compares
favourably to the widely used pattern-based schemes, and
to the previous path-based prediction proposed by Nair. In
most of the benchmarks, the proposed scheme shows better
prediction accuracy than the above schemes.

The target address has a merit in that it can handle indir-
ect jumps. In SPEC benchmark programs, the portion occu-
pied by indirect jumps is small and the benefit obtained by
adopting target addresses of indirect jumps is negligible [6].
But in other benchmarks such asC11 programs, we expect
that adopting target addresses is significant in improving
prediction rates. We also proposed a technique to reduce
correlation length and thus save area.

There is more work that needs to be done in the near
future. One example is the need to investigate the primitive
polynomials in the windowed LFSR. Although it is known
that the primitive polynomial gives the best random prop-
erty in general, there is a question on whether it is optimal
for branch prediction because other polynomials may lead to
better signatures.
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